A New Challenge of Robot for Harvesting Strawberry Grown on Table Top Culture

BRAIN, SI Seiko Co., Ltd.

Strawberry harvesting robots

For Table top culture

For Annual hill culture

Problems in practical use from previous experimental results of strawberry harvesting robot

Similar operation speed with human

(3-10 seconds per fruit)

Inferior accuracy

(50 % of attempts included immature fruits)

Reason of only labor substitution on harvesting does not strike producers for purchasing the robot! Because grading and packing operation is much more laborious.

Roles of Agri-robots

To Substitute labor and workers

To Release from heavy, dangerous, or monotonous operations

To increase market value of product,

To produce uniform products

To make hygienic / aseptic production conditions To give successors a hope for economic sustainability of small high value farm operations

New role

Precise operation record Product Information accumulation Use for safety food and farming guidance

Results Questionnaire to Producers

Results Questionnaire to Producers

Expectation to robot's success rate

Price of robot

Change of growing method

Do you change plant training system for the robot?

Do you change plant variety for the robot?

Change of product appearance

Do you change into fruit with peduncle for the robot?

Do you change fruit packing for the robot?

New concept of the harvesting robot

- 1. **Information accumulation** to contribute to traceability system and farming guidance
- 2. Combination with grading and packing system (Mobile grading robot)
- 3. Multi-operation (spraying, growth monitoring)
- 4. **Tailor-made-type robot** (company diagnoses producer's production way and provides a fitted system)

Strawberry harvesting robot (1st model)

Robot constitution

3 DOF manipulator Sucking and cutting end-effector Stereo vision by use of color CCD cameras DL (Lighting devices) with PL filter Rail type traveling device

Correspondence problem in fruit cluster

Un-Matched fruits

No.1, 3, 4

Exposure of fruit and peduncle

2nd model robot in plant factory

Problems and solutions for practical use from results of the new robot

expensive rather than robot-self_____

Encouragement of laying rails when constructing greenhouse

Revolution of producers' awareness and sense for the robotic and information agriculture

Never give up! Never give up! Never give up! Never give up!

Strong WILL!

Enthusiasm

Solve the problem Solve the problem Solve the problem Solve the problem

Commercialization

Advantages of development of strawberry harvesting robot

- **1. Small fruit growing range**
- 2. Relative few obstacles (stems and leaves) around fruits
- **3.** Easy fruit transportation due to small fruits.
- 4. Color CCD camera is usable to detect fruits because of red target fruit.
- 5. Changeable peduncle length

